Advertisements
Advertisements
Question
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
Solution
Given θ = 30° ....(1)
To verify
`tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
Now consider LHS of the expression to be verified in equation (2)
Therefore
L.H.S = `tan 2 theta`
Now by substituting the value of θ from equation (1) in the above expression.
We get
LHS = `tan 2 xx (30^@)`
`= tan 60^@`
`= sqrt3`
Now by substituting the value of θ from equation (1) in the expression `(2 tan theta)/(1- tan^ theta)`
We get
RHS = `(2tan (30^@))/(1 - tan^2 (30^@))` .....(4)
RHS = `(2xx1/sqrt3)/(1- (1/sqrt3)^2)`
`= (2/sqrt3)/((3-1)/3)`
`= sqrt3`
Now by comparing equation (3) and (4)
We get
LHS = RHS = `sqrt3`
Hence `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
APPEARS IN
RELATED QUESTIONS
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.