English

In Triangle Abc, Ab = Ac = 15 Cm and Bc = 18 Cm. Find: i. Cos B ii. Sin C iii. Tan2 B - Sec2 B + 2 - Mathematics

Advertisements
Advertisements

Question

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:

  1. cos B
  2. sin C
  3. tan2 B - sec2 B + 2
Sum

Solution

In the isosceles ΔABC, the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 9 cm

Since ∠ADB = 90°
⇒ AB2 = AD2 + BD2  ...(AB is hypotenuse in ΔABD)

⇒ AD2 = 152 – 92

⇒ AD2 = 144 

⇒ AD = `sqrt144`

⇒ AD = 12

(i) cos B = `"base"/"hypotenue" = "BD"/"AB" = (9)/(15) = (3)/(5)`

(ii) sin C = `"perpendicular"/"hypotenuse" = "AD"/"AB" = (12)/(15) = (4)/(5)`

(iii) tan B = `"perpendicular"/"base" = "AD"/"BD" = (12)/(9) = (4)/(3)`

sec B = `"hypotenuse"/"base" = "AB"/"BD" = (15)/(9) = (5)/(3)`

Therefore,

tan2 B – sec2 B + 2

= `(4/3)^2 –  (5/3)^2+2`

= `16/9 - 25/9 + 2`

= `16/9 - 25/9 + (2 xx 9)/(1 xx 9)`

= `(16  –  25 + 18)/(9)`

= `9/9`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (B) [Page 287]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (B) | Q 19 | Page 287
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×