Advertisements
Advertisements
Question
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
Solution
In the isosceles ΔABC, the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 9 cm
Since ∠ADB = 90°
⇒ AB2 = AD2 + BD2 ...(AB is hypotenuse in ΔABD)
⇒ AD2 = 152 – 92
⇒ AD2 = 144
⇒ AD = `sqrt144`
⇒ AD = 12
(i) cos B = `"base"/"hypotenue" = "BD"/"AB" = (9)/(15) = (3)/(5)`
(ii) sin C = `"perpendicular"/"hypotenuse" = "AD"/"AB" = (12)/(15) = (4)/(5)`
(iii) tan B = `"perpendicular"/"base" = "AD"/"BD" = (12)/(9) = (4)/(3)`
sec B = `"hypotenuse"/"base" = "AB"/"BD" = (15)/(9) = (5)/(3)`
Therefore,
tan2 B – sec2 B + 2
= `(4/3)^2 – (5/3)^2+2`
= `16/9 - 25/9 + 2`
= `16/9 - 25/9 + (2 xx 9)/(1 xx 9)`
= `(16 – 25 + 18)/(9)`
= `9/9`
= 1
APPEARS IN
RELATED QUESTIONS
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A