Advertisements
Advertisements
Question
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
Solution
A and P are acute angle tan A = tan P
Let us consider right angled triangle ACP,
We know `tan theta = "opposite side"/"adjacent side"`
`tan A = (PC)/(AC)`
`tan P = (AC)/(PC)`
tanA =tan P ....(Given)
`(PC)/(AC) = (AC)/(PC)`
`(PC)^2 = (AC)^2`
PC = AC [∵ Angle opposite to equal sides are equal]
∠P = ∠A
APPEARS IN
RELATED QUESTIONS
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
Evaluate:
cos450 cos300 + sin450 sin300
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`