Advertisements
Advertisements
Question
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
Solution
LHS = `sqrt(" sec θ - cosec θ "/"secθ + cosecθ")`
=`sqrt(((1/costheta-1/sintheta))/((1/costheta+1/(sin theta)))`
=`sqrt((((sintheta-costheta)/(sintheta costheta)))/(((sintheta + costheta)/(sintheta costhet)))`
=`sqrt((((sintheta-costheta)/(sintheta)))/(((sintheta + costheta)/(sintheta)))`
=`sqrt((((sintheta) /(sintheta)-(costheta)/sintheta))/(((sintheta)/(sintheta)+(costheta)/(sintheta)))`
=`sqrt((1-costheta)/(1+costheta))`
=`sqrt(((1-3/4))/((1+3/4)))`
=`sqrt(((1/4))/((7/4)))`
=`sqrt(1/7)`
=`1/sqrt(7)`
= RHS
APPEARS IN
RELATED QUESTIONS
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If cos θ = `7/25` find the value of all T-ratios of θ .
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A = `(7)/(25)`
If sinA = `(3)/(5)`, find cosA and tanA.
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`