Advertisements
Advertisements
Question
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
Solution
Given 𝜃 = 30° ........(1)
To verify
`cos 2 theta= (1 - tan^2 theta)/(1 + tan^2 theta)` .....(2)
Now consider left hand side of the equation (2)
Therefore
`cos 2 theta = cos 2 xx 30`
= cos 60
`= 1/2`
Now consider right hand side of equation (2)
Therefore
`(1 - tan^2 theta)/(1 + tan^2 theta) = (1 - (tan 30)^2)/(1 + (tan 30)^2)`
`= (1 - (1/sqrt3)^2)/(1 + (1/2sqrt3)^2)`
`= (1 - 1/3)/(1 + 1/3)`
`= 1/2`
Hence it is verified that,
`cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
APPEARS IN
RELATED QUESTIONS
If cot θ = 2 find all the values of all T-ratios of θ .
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C