English

If Sec a = Sqrt2 Find the Value of : 3cos^2a+5tan^2a/4tan^4a–Sin^2a - Mathematics

Advertisements
Advertisements

Question

If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`

Sum

Solution

Consider the diagram below :

sec A =`sqrt2`

i.e.`"hypotenuse"/"base" =(sqrt2)/(1) ⇒ "AC"/"AB" =(sqrt2)/(1)`

Therefore if length of AB = x, length of AC =`sqrt2` 

Since
AB2 + BC2 = AC2  ...[ Using Pythagoras Theorem]

(x)2 + BC2 = (`sqrt2"x")^2`

BC2 = 2x2 – x2 = x2

∴ BC = x ...(perpendicular)

Now

tan A = `"perpendicular"/"base" = ("x")/("x") =1`

sin A = `"perpendicular"/"hypotenuse" = ("x")/(sqrt2"x") = (1)/(sqrt2)`

cos A = `"base"/"hypotenuse" = ("x")/(sqrt2"x") = (1)/(sqrt2)`

Therefore
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`

= `(3(1/sqrt2)^2+5(1)^2)/(4(1)^2 – (1/sqrt2)^2)`

= `(13/2)/(7/2)`

= `(13)/(7)`

=`1(6)/(7)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [Page 280]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 18 | Page 280
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×