Advertisements
Advertisements
Question
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.
Solution
Consider the figure below :
sin B = `(8)/(10) = (4)/(5)`
i.e.`"perpendicular"/"hypotenuse" = "AD"/"AB" = (4)/(5)`
Therefore if length of perpendicular = 4x, length of hypotenuse = 5x
Since
AD2 + BD2 = AB2 ...[ Using Pythagoras Theorem ]
(5x)2 – (4x)2 = BD2
BD2 = 9x2
∴ BD = 3x
Now
BD = 9
3x = 9
x = 3
Therefore
AB = 5x
= 5 x 3
= 15 cm
And
AD= 4x
= 4 x 3
= 12 cm
Again
tan C = `(1)/(1)`
i.e.`"perpendicular"/"base" = "AD"/"DC" = (1)/(1)`
Therefore if length of perpendicular = x, length of base = x
Since
AD2 + DC2 = AC2 ...[ Using Pythagoras Theorem ]
(x)2 + (x)2 = AC2
AC2 = 2x2
∴ AC = `sqrt2x`
Now
AD = 12
x = 12
Therefore
DC = x
= 12 cm
And
AC = `sqrt2`
= `sqrt2` x 12
= 12`sqrt2"cm"`
APPEARS IN
RELATED QUESTIONS
If cot θ = 2 find all the values of all T-ratios of θ .
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the side and the diagonals of the rhombus.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`