Advertisements
Advertisements
Question
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Solution
Let us consider a right ΔABC, right angled at B and ∠𝐶 = 𝜃.
Now it is given that tan 𝜃 = `(AB)/(BC) = 1/(sqrt(7))`
So, if AB = k, then BC = `sqrt(7) `𝑘, 𝑤ℎ𝑒𝑟 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.
Using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ AC^2 = (k)^2 + (sqrt(7K)`
`⟹ AC^2 = K^2 + 7K^2`
`⟹ AC = 2sqrt(2K)`
Now, finding out the values of the other trigonometric ratios, we have:
sin θ = `(AB)/(AC) = K/(2sqrt(2k)) = 1/(2sqrt(2))`
cos θ = `( BC)/(AC) = (sqrt(7k))/(2 sqrt(2k)) = (sqrt(7))/(2sqrt(2))`
∴ 𝑐𝑜𝑠𝑒𝑐 𝜃 =`1/(sin θ) = 2 sqrt(2) and sec θ = 1/cos θ = (2sqrt(2))/(sqrt(7))`
Substituting the values of cosec θ and sec θ in the give expression, we get:
`(cosec^2 θ - sec^2 θ)/(cosec^2 θ + sec2 θ)`
=`(2 sqrt(2)^2-((2sqrt(2))/sqrt(7))^2)/(2sqrt({2)^2)+((2sqrt(2))/sqrt(7))^2)`
=`(8-(8/7))/(8+(8/7))`
= `((56-8)/7)/((56+8)/7)`
=`48/64 = 3/4 `= 𝑅𝐻𝑆
i.e., LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
In Fig below, Find tan P and cot R. Is tan P = cot R?
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
cos 40° = sin ______°
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
From the given figure, find the values of tan C
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.