Advertisements
Advertisements
Question
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
Solution
Given angle BAC = 90°
⇒ BC2 = AB2 + AC2 ...(BC is hypotenuse)
⇒ 172 = 82 + AC2
⇒ AC2 = 289 - 64
⇒ AC2 = 225
⇒ AC = `sqrt225`
∴ AC = 15
(i) cos B = `"base"/"hypotenuse" = "AB"/"BC" = 8/17`
(ii) tan C = `"perpendicular"/"base" = "AB"/"AC" = 8/15`
(iiii) sin B = `"perpendicular"/"hypotenuse" = "AC"/"BC" = 15/17`
cos B = `"base"/"hypotenuse" = "AB"/"BC" = 8/17`
∴ sin2 B+ cos2 B = `(("perpendicular")/("hypotenuse"))^2 + (("base")/("hypotenuse"))^2`
= ` (15/ 17)^2 + (8 /17)^2`
= `(225 + 64) / (289) `
= `(289)/(289) `
= 1
(iv) sin B = `"perpendicular"/"hypotenuse" = "AC"/"BC" = 15/17`
cos B = `"base"/"hypotenuse" = "AB"/"BC" = 8/17`
sin C = `"perpendicular"/"hypotenuse" = "AB"/"BC" = 8/17`
cos C = `"base"/"hypotenuse" = "AC"/"BC" = 15/17`
sin B · cos C + cos B · sin C
= ` 15/17. 15/17 + 8/17. 8/17 `
= `( 225 + 64 )/ (289)`
= `(289)/(289)`
= 1
APPEARS IN
RELATED QUESTIONS
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
tan 30° × tan ______° = 1
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
If sinA = `(3)/(5)`, find cosA and tanA.
If sinA = 0.8, find the other trigonometric ratios for A.