Advertisements
Advertisements
Question
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
Solution
Given:
A = B = 60° ......(1)
To verify:
`tan (A - B) = (tan A - tanB)/(1 + tan Atan B)` ......(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore.
`tan (A - B) = tan (B - B)`
= tan 0
= 0
Now consider RHS of the expression to be verified in equation (2)
Therefore
Now by substituting the value of A and B from equation (1) in the above expression
We get,
`(tan A - tan B)/(1 + tanA tan B) = (tan B - tan B)/(1 + tanB tan B)`
`= 0/(1 + tan^2 B)`
= 0
Hence it is verified that,
`tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
APPEARS IN
RELATED QUESTIONS
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.