Advertisements
Advertisements
Question
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
Solution
sin A + cosec A = 2
Squaring both sides
(sin A + cosecA)2 = 22
sin2 A + cosec2 A + 2sin A . cosecA = 4
sin2 A + cosec2A + 2sin A. `1/sin "A"` = 4
sin2 A + cosec2 A = 2
APPEARS IN
RELATED QUESTIONS
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS