Advertisements
Advertisements
Question
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Solution
cos (A + B) = cos 900 = 0
cos A cos B - sin A sin B = cos 600 cos 300 - sin 600 sin 300
=`(1/2 xx sqrt(3)/2 - sqrt(3)/2 xx1/2) = ( sqrt(3)/4 - sqrt(3)/4) = 0`
∴ cos (A + B) = cos A cos B - sin A sin B
APPEARS IN
RELATED QUESTIONS
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
From the given figure, find all the trigonometric ratios of angle B
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.