Advertisements
Advertisements
Question
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.
Options
0°
90°
30°
60°
Solution
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is 90°.
Explanation:
sin α = `1/2`
sin 30° = `1/2`
∴ α = 30°
cos β = `1/2`
∴ β = 60°
∴ α + β = 30° + 60°
= 90°
APPEARS IN
RELATED QUESTIONS
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR