Advertisements
Advertisements
Question
The value of tan 1° tan 2° tan 3°…. tan 89° is
Options
0
1
2
`sqrt(3)/2`
Solution
1
Explanation;
Hint:
tan 1°. tan 2°. tan 3° …….. tan 89°
= tan (90° – 89°). tan (90° – 88°) .tan (90° – 87°) …….. tan 45°. tan (89°)
= cot 89°. cot 88°. cot 87°. ……. tan 45° …….. tan 87°. tan 88°. tan 89°
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate cosec 31° − sec 59°
Write all the other trigonometric ratios of ∠A in terms of sec A.
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Use tables to find sine of 62° 57'
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)