English

Write all the other trigonometric ratios of ∠A in terms of sec A. - Mathematics

Advertisements
Advertisements

Question

Write all the other trigonometric ratios of ∠A in terms of sec A.

Sum

Solution

(i) `sin A  = sin A /1`

= `(sin A ÷ cos A)/(1÷ cos A)`

= `(sin A/cosA)/(1/cosA)`

= `tan A/sec A`

= `sqrt( tan^2 A)/sec A`

= `sqrt(sec^2A-1)/(secA)`

(ii) `cos A =  1/(sec A)`

(iii) `tan A = sqrt(tan^2 A) = sqrt(sec^2 A-1)`

(iv) `cosec  A  = 1/sinA = secA/sqrt(sec^2A-1)`

(v) `cot A = (cos A)/(sin A)`

= `(1/(secA))/(sqrt(sec^2A-1)/secA)`

= `1/(sqrt(sec^2A-1))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 2 | Page 193

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
`tan47/cot43`


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


Find the value of x, if sin 2x = 2 sin 45° cos 45°


Use tables to find sine of 47° 32'


Use tables to find sine of 10° 20' + 20° 45'


Use tables to find cosine of 9° 23’ + 15° 54’


Prove that:

tan (55° - A) - cot (35° + A)


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If the angle θ = –45° , find the value of tan θ.


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 


Write the value of tan 10° tan 15° tan 75° tan 80°?


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

The value of cos2 17° − sin2 73° is 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


Evaluate:

3 cos 80° cosec 10°+ 2 sin 59° sec 31°


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


If tan θ = cot 37°, then the value of θ is


If sin 3A = cos 6A, then ∠A = ?


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×