Advertisements
Advertisements
Question
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
Options
\[\frac{1}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
0
Solution
We are given`16 cot x=12` .We are asked to find the following
`(sin x-cos x)/(sin x+cos x)`
We know that: `cot x= "Base"/"Perpendicular" `
⇒ "Base"=3
⇒ "Perpendicular"=4
⇒ `"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
⇒ `"Hypotenuse"=sqrt(16+9)`
⇒`"Hypotenuse"=5`
Now we have
`16 cot x=12`
`cot x=12/16`
`cot x=3/4`,
We know sin x=`"Perpendicular"/"Hypotenuse" and Cos x= "Base"/"Hypotenuse"`
Now we find
`(Sin x- cos x)/(sin z+cos x)`
= `(4/5-3/5)/(4/5+3/5)`
=`(1/5)/(7/5)`
=`1/7`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Solve.
`cos22/sin68`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find cosine of 8° 12’
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
Write the maximum and minimum values of cos θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If 3 cos θ = 5 sin θ, then the value of
If A and B are complementary angles, then
The value of
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
`(sin 75^circ)/(cos 15^circ)` = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.