English

If 16 Cot X = 12, Then Sin X − Cos X Sin X + Cos X - Mathematics

Advertisements
Advertisements

Question

If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]

Options

  • \[\frac{1}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{2}{7}\]

  • 0

MCQ

Solution

We are given`16 cot x=12` .We are asked to find the following

`(sin x-cos x)/(sin x+cos x)`

We know that: `cot x= "Base"/"Perpendicular" `

⇒ "Base"=3

⇒ "Perpendicular"=4

⇒ `"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`

⇒ `"Hypotenuse"=sqrt(16+9)`

⇒`"Hypotenuse"=5`

Now we have

`16 cot x=12`

`cot x=12/16`

`cot x=3/4`,

We know sin x=`"Perpendicular"/"Hypotenuse" and Cos x= "Base"/"Hypotenuse"`

Now we find

`(Sin x- cos x)/(sin z+cos x)`

= `(4/5-3/5)/(4/5+3/5)`

=`(1/5)/(7/5)`

=`1/7`

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 4 | Page 56

RELATED QUESTIONS

Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


Solve.
`cos22/sin68`


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


Evaluate:

tan(55° - A) - cot(35° + A)


Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°


Use tables to find cosine of 8° 12’


Evaluate:

`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


Write the maximum and minimum values of cos θ.


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

If A and B are complementary angles, then


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?


`(sin 75^circ)/(cos 15^circ)` = ?


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×