Advertisements
Advertisements
प्रश्न
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
पर्याय
\[\frac{1}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
0
उत्तर
We are given`16 cot x=12` .We are asked to find the following
`(sin x-cos x)/(sin x+cos x)`
We know that: `cot x= "Base"/"Perpendicular" `
⇒ "Base"=3
⇒ "Perpendicular"=4
⇒ `"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
⇒ `"Hypotenuse"=sqrt(16+9)`
⇒`"Hypotenuse"=5`
Now we have
`16 cot x=12`
`cot x=12/16`
`cot x=3/4`,
We know sin x=`"Perpendicular"/"Hypotenuse" and Cos x= "Base"/"Hypotenuse"`
Now we find
`(Sin x- cos x)/(sin z+cos x)`
= `(4/5-3/5)/(4/5+3/5)`
=`(1/5)/(7/5)`
=`1/7`
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate.
cos225° + cos265° - tan245°
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use trigonometrical tables to find tangent of 42° 18'
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If A and B are complementary angles, then
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If x and y are complementary angles, then ______.
The value of the expression (cos2 23° – sin2 67°) is positive.