Advertisements
Advertisements
प्रश्न
Show that cos 38° cos 52° − sin 38° sin 52° = 0
उत्तर
cos 38° cos 52° − sin 38° sin 52°
= cos (90° − 52°) cos (90°−38°) − sin 38° sin 52°
= sin 52° sin 38° − sin 38° sin 52°
= 0
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 10° 20' + 20° 45'
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
tan (55° - A) - cot (35° + A)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If the angle θ = –45° , find the value of tan θ.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to