Advertisements
Advertisements
प्रश्न
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
उत्तर
4 cos2 A − 3 = 0
`cos A = sqrt(3)/2`
We know `cos 30^circ = sqrt(3)/2`
So, A = 30°
L.H.S. = sin 3A = sin 90° = 1
R.H.S. = 3 sin A – 4 sin3 A
= 3 sin 30° – 4 sin3 30°
= `3 xx 1/2 - 4 xx (1/2)^3` ...{∵ sin 30° = `1/2`}
= `3/2 - 4 xx 1/8`
= `3 /2 - 1/2`
= `2/2`
= 1
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Write the maximum and minimum values of cos θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Solve: 2cos2θ + sin θ - 2 = 0.