Advertisements
Advertisements
प्रश्न
What is the maximum value of \[\frac{1}{\sec \theta}\]
उत्तर
The maximum value of `1/cosθ` is 1 because the maximum value of sinθ is 1 that is
`1/(cosec θ)=sin θ`
`1/(cosec θ)=1`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Evaluate `(tan 26^@)/(cot 64^@)`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If A and B are complementary angles, then
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
The value of tan 72° tan 18° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
`tan 47^circ/cot 43^circ` = 1