मराठी

If Sin Theta = 1/Sqrt2 Find All Other Trigonometric Ratios of Angle Theta. - Mathematics

Advertisements
Advertisements

प्रश्न

if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.

उत्तर

Given `sin theta = 1/sqrt2`

We have to find all the trigonometric ratios.

We have the following right angle triangle.

From the above figure,

Base = `sqrt("Hypotenuse"^2 - "Perpendicular"^2)`

`=> BC = sqrt("AC"^2 - sqrt(AB)^2)`

`=> BC= sqrt((sqrt2)^2    - 1^2)`

`=> BC= 1`

`cos theta = (BC)/(AC) = 1/sqrt2`

`cosec theta = (AC)/(AB) = sqrt2/1 = sqrt2`

`sec theta = (AC)/(BC) = sqrt2/1 = sqrt2`

`tan theta = (AB)/(BC) = 1/1 = 1`

`cot theta = (BC)/(AB) = 1/1 = 1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.2 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.2 | Q 2 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Evaluate `(sin 18^@)/(cos 72^@)`


solve.
cos240° + cos250°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


If the angle θ = –45° , find the value of tan θ.


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


In the following figure  the value of cos ϕ is 


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×