Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
उत्तर
Since, A and B are complementary angles, A + B = 90°
cot A cot B – sin A cos B – cos A sin B
= cot A cot (90° – A) – sin A cos (90° – A) – cos A sin (90° – A)
= cot A tan A – sin A sin A – cos A cos A
= 1 – (sin2 A + cos2 A)
= 1 – 1
= 0
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Use tables to find cosine of 26° 32’
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
The value of cos2 17° − sin2 73° is
Sin 2A = 2 sin A is true when A =
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.