Advertisements
Advertisements
प्रश्न
Sin 2A = 2 sin A is true when A =
पर्याय
0°
30°
45°
60°
उत्तर
We are given sin 2A=` 2sin A. cos.A`
So
⇒` 2 sin A. cos A=2 sin A`
⇒` 2 sin A. cos A= 2 sin A`
⇒ `cos A=1`
⇒ `cos A= cos 0°`
`As A= 0°`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If tanθ = 2, find the values of other trigonometric ratios.
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
If x and y are complementary angles, then ______.
The value of the expression (cos2 23° – sin2 67°) is positive.