मराठी

Express the following in term of angles between 0° and 45° : cos 74° + sec 67° - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°

बेरीज

उत्तर

cos 74° + sec 67°

= cos(90° – 16°) + sec(90° – 23°)

= sin 16° + cosec 23°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Complementary Angles - Exercise 25 [पृष्ठ ३१०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 25 Complementary Angles
Exercise 25 | Q 4.3 | पृष्ठ ३१०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Use tables to find cosine of 26° 32’


Use tables to find cosine of 9° 23’ + 15° 54’


Use trigonometrical tables to find tangent of 37°


Use trigonometrical tables to find tangent of 42° 18'


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×