Advertisements
Advertisements
प्रश्न
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
उत्तर
cos 74° + sec 67°
= cos(90° – 16°) + sec(90° – 23°)
= sin 16° + cosec 23°
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find cosine of 26° 32’
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 37°
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.