Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
उत्तर
\[\begin{array}{l} LHS = \frac{\cos( {90}^\circ - \theta)\sec( {90}^\circ - \theta)\tan\theta}{\text{cosec} ( {90}^\circ- \theta)\sin( {90}^\circ - \theta)\cot( {90}^\circ - \theta)} + \frac{\tan( {90}^\circ - \theta)}{\cot\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta \text cosec\theta\tan\theta}{\sec\theta\cos\theta\tan\theta} + \frac{\cot\theta}{\cot\theta} \\ \end{array}\]
= 1 + 1
= 2
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solve.
`sec75/(cosec15)`
solve.
sec2 18° - cot2 72°
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.