Advertisements
Advertisements
प्रश्न
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
पर्याय
cot2 A
cot2 B
−tan2 A
−cot2 A
उत्तर
We have:
`A+B=90°`
`⇒ B=90°-A`
We have to find the value of the following expression
`(tan A tan B+tan A cot B)/(sin A sec B)-sin ^2 B/cos^2 A`
so
`(tan A tan B+tan A cot B )/(sin A sec B)- sin^2 B/cos^2 A`
`(tan A tan (90°-A)+ tan A cot (90°-A))/(sin A sec (90°-A))-sin^2(90°-A)/cos^2 A`
=` (tan A cot A + tan A tan A)/(sin A cosec A)-cos^2A/cos^2 A`
= `1+tan^2 A-1`
=` tan ^2 A`
=` tan ^2(90°-B)`
=` cot^2 B`
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If tan A = cot B, prove that A + B = 90
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Use tables to find sine of 34° 42'
Use tables to find cosine of 65° 41’
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Write the value of tan 10° tan 15° tan 75° tan 80°?
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of tan 72° tan 18° is
If x and y are complementary angles, then ______.