Advertisements
Advertisements
प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
उत्तर
`sintheta=3/5`
we know `sin theta="Opposite"/"Hypotunes"=p/h`
`therefore p/h=3/5` [∵ Opposite = Perpendicular = p]
p=3k, h=5k
Let the adjacent (base) side be b.
Thus `b=sqrt((5k)^2-(3k)^2)=4k`
`costheta=(4k)/(5k)=4/5`
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Evaluate cosec 31° − sec 59°
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 8° 12’
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.