Advertisements
Advertisements
प्रश्न
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.
पर्याय
cos 30°
tan 30°
sin 30°
cot 30°
उत्तर
If x tan 60° cos 60°= sin 60° cot 60°, then x = tan 30°.
Explanation:
Given, x tan 60° cos 60°= sin 60° cot 60°
x tan 60° cos 60°= sin 60° × `1/tan 60^circ`
Putting values
`x xx sqrt(3) xx 1/2 = sqrt(3)/2 xx 1/sqrt(3)`
`x xx sqrt(3)/2 = 1/2`
x = `1/2 xx 2/sqrt(3)`
x = `1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Evaluate cosec 31° − sec 59°
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find sine of 34° 42'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.