Advertisements
Advertisements
प्रश्न
Evaluate cosec 31° − sec 59°
उत्तर
cosec 31° − sec 59° = cosec (90° − 59°) − sec 59°
= sec 59° − sec 59°
= 0
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
The value of (tan1° tan2° tan3° ... tan89°) is ______.