मराठी

If θ is an Acute Angle Such that Cos θ = 3 5 , Then Sin θ Tan θ − 1 2 Tan 2 θ = Cos θ = 3 5 , Then Sin θ Tan θ − 1 2 Tan 2 θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 

पर्याय

  • \[\frac{16}{625}\]

  • \[\frac{1}{36}\]

  • \[\frac{3}{160}\]

  • \[\frac{160}{3}\]

MCQ

उत्तर

Given: cos θ = 3/5 and we need to find the value of the following expression` "sinθ tanθ-1"/"2tan^2 θ"` 

We know that `cos θ = "Base"/"Hypotenuse"` 

⇒`"Base"=3 `

⇒ `"Hypotenuse"=5` 

⇒`" Perpendicular"= sqrt(("Hypotenuse")^2-("Base")^2)` 

⇒ `"Perpendicular"= sqrt(25-9)` 

⇒`"Perpendicular"=4`

`"Since" sin θ= "Perpendicular"/"Hypotenuse"` 

and tan θ= `"Perpendicular"/"Base" ` 

So we find, 

`(sin θ tan θ-1)/(2 tan^2 θ)` 

`(4/5xx4/3-1)/(2xx(4/3)^2)` 

`(16/15-1)/(32/9)` 

`(1/15)/(32/9)`

`3/160` 

Hence the correct option is (c78)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 1 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of x, if sin 3x = 2 sin 30° cos 30°


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


If the angle θ = –45° , find the value of tan θ.


Write the maximum and minimum values of cos θ.


Write the value of tan 10° tan 15° tan 75° tan 80°?


If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×