Advertisements
Advertisements
प्रश्न
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
पर्याय
\[\frac{16}{625}\]
\[\frac{1}{36}\]
\[\frac{3}{160}\]
\[\frac{160}{3}\]
उत्तर
Given: cos θ = 3/5 and we need to find the value of the following expression` "sinθ tanθ-1"/"2tan^2 θ"`
We know that `cos θ = "Base"/"Hypotenuse"`
⇒`"Base"=3 `
⇒ `"Hypotenuse"=5`
⇒`" Perpendicular"= sqrt(("Hypotenuse")^2-("Base")^2)`
⇒ `"Perpendicular"= sqrt(25-9)`
⇒`"Perpendicular"=4`
`"Since" sin θ= "Perpendicular"/"Hypotenuse"`
and tan θ= `"Perpendicular"/"Base" `
So we find,
`(sin θ tan θ-1)/(2 tan^2 θ)`
`(4/5xx4/3-1)/(2xx(4/3)^2)`
`(16/15-1)/(32/9)`
`(1/15)/(32/9)`
`3/160`
Hence the correct option is (c78)
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If the angle θ = –45° , find the value of tan θ.
Write the maximum and minimum values of cos θ.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.