Advertisements
Advertisements
Question
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
Options
\[\frac{16}{625}\]
\[\frac{1}{36}\]
\[\frac{3}{160}\]
\[\frac{160}{3}\]
Solution
Given: cos θ = 3/5 and we need to find the value of the following expression` "sinθ tanθ-1"/"2tan^2 θ"`
We know that `cos θ = "Base"/"Hypotenuse"`
⇒`"Base"=3 `
⇒ `"Hypotenuse"=5`
⇒`" Perpendicular"= sqrt(("Hypotenuse")^2-("Base")^2)`
⇒ `"Perpendicular"= sqrt(25-9)`
⇒`"Perpendicular"=4`
`"Since" sin θ= "Perpendicular"/"Hypotenuse"`
and tan θ= `"Perpendicular"/"Base" `
So we find,
`(sin θ tan θ-1)/(2 tan^2 θ)`
`(4/5xx4/3-1)/(2xx(4/3)^2)`
`(16/15-1)/(32/9)`
`(1/15)/(32/9)`
`3/160`
Hence the correct option is (c78)
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Solve.
sin15° cos75° + cos15° sin75°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
What is the maximum value of \[\frac{1}{\sec \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If A and B are complementary angles, then
The value of tan 10° tan 15° tan 75° tan 80° is
Sin 2A = 2 sin A is true when A =
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If tan θ = 1, then sin θ . cos θ = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.