Advertisements
Advertisements
Question
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
Solution
Given: tan` A=5/12`
`"Perpendicular"/"Base"=5/12`
`"Perpendicular"=5`
`Base=12`
`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
We know that: ` tan A="Perpendicular"/"Base"`
`"Hypotenuse"=sqrt((5)^2+(12)^2)`
`"Hypotenuse"=sqrt169`
`"Hypotenuse"=13`
Now we find, `(sin A+cos A) SecA`
⇒ `(Sin A+Cos A)Sec A=(5/13+12/13)xx13/12`
⇒ `(sin A+cos A)sec A=17/13xx13/12`
⇒ `(sin A+cos A) sec A=17/12`
Hence the value of` (sin A+ cos A)sec A "is" 17/12`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 21°
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
If the angle θ = –45° , find the value of tan θ.
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of cos2 17° − sin2 73° is
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If cot( 90 – A ) = 1, then ∠A = ?
The value of (tan1° tan2° tan3° ... tan89°) is ______.
`tan 47^circ/cot 43^circ` = 1