English

If Tan a = 5 12 Tan a = 5 12 Find the Value of (Sin a + Cos A) Sec A. - Mathematics

Advertisements
Advertisements

Question

If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 

Sum

Solution

Given:  tan` A=5/12` 

`"Perpendicular"/"Base"=5/12` 

`"Perpendicular"=5` 

`Base=12` 

`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`

We know that: ` tan A="Perpendicular"/"Base"` 

`"Hypotenuse"=sqrt((5)^2+(12)^2)`  

`"Hypotenuse"=sqrt169` 

`"Hypotenuse"=13` 

Now we find, `(sin A+cos A) SecA`

⇒ `(Sin A+Cos A)Sec A=(5/13+12/13)xx13/12` 

⇒ `(sin A+cos A)sec A=17/13xx13/12` 

⇒ `(sin A+cos A) sec A=17/12`

Hence the value of` (sin A+ cos A)sec A  "is" 17/12` 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.4 | Q 16 | Page 55

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find sine of 21°


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


If the angle θ = –45° , find the value of tan θ.


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


The value of cos2 17° − sin2 73° is 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


\[\frac{2 \tan 30°}{1 - \tan^2 30°}\]  is equal to ______.


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


If cot( 90 – A ) = 1, then ∠A = ?


The value of (tan1° tan2° tan3° ... tan89°) is ______.


`tan 47^circ/cot 43^circ` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×