Advertisements
Advertisements
Question
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Solution
`2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
= `2(tan(90° - 33°))/(cot33°) - (cot(90° - 20°))/(tan20°) - sqrt(2) (1/sqrt(2))`
= `2(cot33°)/(cot33°) - (tan20°)/(tan20°) - 1`
= 2 - 1 - 1
= 0.
APPEARS IN
RELATED QUESTIONS
Use tables to find sine of 21°
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find cosine of 8° 12’
Use tables to find cosine of 9° 23’ + 15° 54’
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If the angle θ = –45° , find the value of tan θ.
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If tan θ = 1, then sin θ . cos θ = ?
`(sin 75^circ)/(cos 15^circ)` = ?
The value of the expression (cos2 23° – sin2 67°) is positive.