Advertisements
Advertisements
Question
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
Solution
Given in question:
`A+B=90°`
tan `A=3/4`
`A+B=90°`
⇒` B=90°-A`
⇒ `Cot B= cot(90°-A)`
⇒` Cot B= tan A`
⇒ `Cot B=3/4[cot (90°-A)=tan A]`
Hence the value of cot B is `3/4`
APPEARS IN
RELATED QUESTIONS
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 47° 32'
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
The value of tan 1° tan 2° tan 3° ...... tan 89° is
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.