English

If a + B = 90° and Tan a = 3 4 Tan a = 3 4 What is Cot B? - Mathematics

Advertisements
Advertisements

Question

If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B

Sum

Solution

Given in question: 

`A+B=90°` 

tan `A=3/4` 

`A+B=90°` 

⇒` B=90°-A` 

⇒ `Cot B= cot(90°-A)`

⇒` Cot B= tan A` 

⇒ `Cot B=3/4[cot (90°-A)=tan A]` 

Hence the value of cot B  is  `3/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.4 | Q 15 | Page 55

RELATED QUESTIONS

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°


Use tables to find sine of 47° 32'


Use trigonometrical tables to find tangent of 17° 27'


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)` 


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


If ∆ABC is right angled at C, then the value of cos (A + B) is ______.


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×