Advertisements
Advertisements
Question
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
Solution
Given that:
`A+B=90°`
`tan A=3/4`
A+B=90°
⇒B=90°-A
⇒ `cot B= cot (90°-A)`
⇒` cot B= tan A`
⇒`cot B=3/4[cot(90°-A)=tan A]`
Hence the value of cot B is `3/4`
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 8° 12’
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Solve: 2cos2θ + sin θ - 2 = 0.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
`tan 47^circ/cot 43^circ` = 1