Advertisements
Advertisements
Question
If the angle θ = -60° , find the value of sinθ .
Solution
We know that, for any angle θ ,sin(-θ) = -sinθ
`thereforesin(-60^@)=-sin60^@=-sqrt3/2`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
`cos55/sin35+cot35/tan55`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find cosine of 2° 4’
Use trigonometrical tables to find tangent of 17° 27'
Prove that:
sin (28° + A) = cos (62° – A)
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
`(sin 75^circ)/(cos 15^circ)` = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
Sin 2B = 2 sin B is true when B is equal to ______.