English

P Given 4 Cos θ − Sin θ 2 Cos θ + Sin θ What is the Value of C O S E C 2 θ − Sec 2 θ C O S E C 2 θ + Sec 2 θ - Mathematics

Advertisements
Advertisements

Question

Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]

Sum

Solution

Given: ` tan θ= 1/sqrt5`

We know that: `tan θ=("Prependicular")/("Base")` 

`("Prependicular")/("Base")=1/sqrt5`  

`"Hypotenuse"= sqrt( ("Perpendicular")^2+("Base")^2)` 

`"Hypotenuse"=sqrt(1+5)`

`"Hypotenuse"=sqrt6` 

Now we find, `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` 

=`(("hypotenuse")^2/("Perpendicular")^2-("hypotenuse")^2/("Base")^2)/(("hypotenuse")^2/("Perpendicular")^2+("hypotenuse")^2/("Base")^2)` 

= `((sqrt6)^2/(1)^2-(sqrt6)^2/(sqrt5)^2)/((sqrt6)^2/(1)^2+((sqrt6))/(sqrt5)^2)` 

= `(6/1-6/5)/(6/1+6/5)` 

=`(24/5)/(36/5)` 

=`2/3` 

Hence the value of `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` is `2/3` 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.4 | Q 8 | Page 55

RELATED QUESTIONS

If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Show that cos 38° cos 52° − sin 38° sin 52° = 0


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)` 


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Evaluate:

tan(55° - A) - cot(35° + A)


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find cosine of 26° 32’


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


The value of tan 10° tan 15° tan 75° tan 80° is 


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Evaluate:

3 cos 80° cosec 10°+ 2 sin 59° sec 31°


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


Sin 2B = 2 sin B is true when B is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×