Advertisements
Advertisements
Question
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Solution
Given: ` tan θ= 1/sqrt5`
We know that: `tan θ=("Prependicular")/("Base")`
`("Prependicular")/("Base")=1/sqrt5`
`"Hypotenuse"= sqrt( ("Perpendicular")^2+("Base")^2)`
`"Hypotenuse"=sqrt(1+5)`
`"Hypotenuse"=sqrt6`
Now we find, `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`
=`(("hypotenuse")^2/("Perpendicular")^2-("hypotenuse")^2/("Base")^2)/(("hypotenuse")^2/("Perpendicular")^2+("hypotenuse")^2/("Base")^2)`
= `((sqrt6)^2/(1)^2-(sqrt6)^2/(sqrt5)^2)/((sqrt6)^2/(1)^2+((sqrt6))/(sqrt5)^2)`
= `(6/1-6/5)/(6/1+6/5)`
=`(24/5)/(36/5)`
=`2/3`
Hence the value of `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` is `2/3`
APPEARS IN
RELATED QUESTIONS
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
The value of tan 10° tan 15° tan 75° tan 80° is
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
Sin 2B = 2 sin B is true when B is equal to ______.