Advertisements
Advertisements
Question
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Solution
cos 38° cos 52° − sin 38° sin 52°
= cos (90° − 52°) cos (90°−38°) − sin 38° sin 52°
= sin 52° sin 38° − sin 38° sin 52°
= 0
APPEARS IN
RELATED QUESTIONS
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
solve.
sec2 18° - cot2 72°
Evaluate.
sin235° + sin255°
Evaluate:
cosec (65° + A) – sec (25° – A)
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find sine of 47° 32'
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find cosine of 8° 12’
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
Write the maximum and minimum values of sin θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If A and B are complementary angles, then
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.