Advertisements
Advertisements
Question
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
Solution
cos2 A – cos A = 0
`=>` cos A (cos A – 1) = 0
`=>` cos A = 0 or cos A = 1
We know cos 90° = 0 and cos 0° = 1
Hence, A = 90° or 0°
APPEARS IN
RELATED QUESTIONS
Solve.
`cos55/sin35+cot35/tan55`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find sine of 62° 57'
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Sin 2B = 2 sin B is true when B is equal to ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.