Advertisements
Advertisements
प्रश्न
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
उत्तर
cos2 A – cos A = 0
`=>` cos A (cos A – 1) = 0
`=>` cos A = 0 or cos A = 1
We know cos 90° = 0 and cos 0° = 1
Hence, A = 90° or 0°
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Solve.
`cos55/sin35+cot35/tan55`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
If sin 3A = cos 6A, then ∠A = ?