Advertisements
Advertisements
प्रश्न
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
उत्तर
cos74° + sec67°
= cos(90 - 16)° + sec(90 - 23)°
= sin16° + cosec23°
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate:
cosec (65° + A) – sec (25° – A)
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
The value of tan 72° tan 18° is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is