Advertisements
Advertisements
प्रश्न
Evaluate:
cosec (65° + A) – sec (25° – A)
उत्तर
cosec (65° + A) – sec (25° – A)
= cosec [90° – (25° – A)] – sec (25° – A)
= sec (25° – A) – sec (25° – A)
= 0
APPEARS IN
संबंधित प्रश्न
solve.
sec2 18° - cot2 72°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If sin 3A = cos 6A, then ∠A = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.