Advertisements
Advertisements
प्रश्न
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
उत्तर
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
= `cot theta/cot theta + (sin theta* tan theta xx "cosec" theta)/(cos theta xx tan theta * sec theta)`
= `1 + sin theta/cos theta xx 1/sintheta xx costheta/1`
= 1 + 1
= 2
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Evaluate cosec 31° − sec 59°
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Use tables to find cosine of 9° 23’ + 15° 54’
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
If cot( 90 – A ) = 1, then ∠A = ?