मराठी

Prove that : Tan5° Tan25° Tan30° Tan65° Tan85° = 1 √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]

बेरीज

उत्तर

\[\begin{array}{l}(i) {LHS=tan5}^0 \tan {25}^0 \tan {30}^0 \tan {65}^0 \tan {85}^0 \\ \end{array}\]
\[\begin{array}{l}=tan( {90}^0 - {85}^0 )\tan( {90}^0 - {65}^0 )\times\frac{1}{\sqrt{3}}\times\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[\begin{array}{l}{=cot85}^0 \cot {65}^0 \frac{1}{\sqrt{3}}\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[=\frac{1}{\sqrt{3}} = RHS\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.1 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Prove that:

`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Evaluate: cos2 25° - sin2 65° - tan2 45°


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


If tan θ = 1, then sin θ . cos θ = ?


If x and y are complementary angles, then ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×