Advertisements
Advertisements
Question
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Solution
\[\begin{array}{l}(i) {LHS=tan5}^0 \tan {25}^0 \tan {30}^0 \tan {65}^0 \tan {85}^0 \\ \end{array}\]
\[\begin{array}{l}=tan( {90}^0 - {85}^0 )\tan( {90}^0 - {65}^0 )\times\frac{1}{\sqrt{3}}\times\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[\begin{array}{l}{=cot85}^0 \cot {65}^0 \frac{1}{\sqrt{3}}\frac{1}{\cot {65}^0}\frac{1}{\cot {85}^0} \\ \end{array}\]
\[=\frac{1}{\sqrt{3}} = RHS\]
APPEARS IN
RELATED QUESTIONS
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
sin235° + sin255°
Evaluate:
cosec (65° + A) – sec (25° – A)
Use tables to find sine of 47° 32'
Use tables to find sine of 62° 57'
Use tables to find sine of 10° 20' + 20° 45'
Use trigonometrical tables to find tangent of 37°
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)