Advertisements
Advertisements
Question
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Solution
Terminal arm passes through (4,3).
Hence,
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate.
sin235° + sin255°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Use tables to find cosine of 9° 23’ + 15° 54’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Prove that:
tan (55° - A) - cot (35° + A)
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of cos2 17° − sin2 73° is
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Find the value of the following:
sin 21° 21′
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.