English

If Cot Theta = Sqrt3 Find the Value of (Cosec^2 Theta + Cot^2 Theta)/(Cosec^2 Theta - Sec^2 Theta) - Mathematics

Advertisements
Advertisements

Question

if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`

Solution

`Given `cot theta = sqrt3`

We have to find the value of the expression `(cosec^2 theta = cot^2 theta)/(cosec^2 theta - sec^2 theta)`

We know that

`cot theta  = sqrt3 => cot^2 theta = 3` 

`cosec^2 theta =1 + cot^2 theta = 1 + (sqrt3)^2 = 4`

`sec^2 theta = 1/cos^2 theta = 1/(1 - sin^2 theta) = 1/(1 - 1/cosec^2 theta) = 1/(1 - 1/4) = 4/3`

Therefore

`(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta) = (4 + 3)/(4 - 4/3)`

`= 21/8`

Hence, the value of the given expression is  21/8

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.2 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.2 | Q 8 | Page 54

RELATED QUESTIONS

If the angle θ = -60° , find the value of sinθ .


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Solve.
`sec75/(cosec15)`


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Use tables to find sine of 10° 20' + 20° 45'


Use tables to find the acute angle θ, if the value of sin θ is 0.3827


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


Write the value of tan 10° tan 15° tan 75° tan 80°?


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


If tan θ = cot 37°, then the value of θ is


`(sin 75^circ)/(cos 15^circ)` = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×