Advertisements
Advertisements
Question
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
Options
2
−2
\[- \frac{1}{2}\]
\[\frac{1}{2}\]
Solution
We are given:` tan^2 45°-cos^2 30°=x sin 45° cos 45°`
We have to find x
⇒` 1-(sqrt3/2)^2=x 1/sqrt2 xx1/sqrt2`
⇒ `1-3/4=x/2`
⇒ `1/4=x/2`
⇒`x=1/2`
We know that ` sin°45=1/sqrt2 , cos 45°=1/sqrt2, tan 45°=1, cos 30°=sqrt3/2`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`sec75/(cosec15)`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 21°
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
The value of cos2 17° − sin2 73° is
The value of
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
`tan 47^circ/cot 43^circ` = 1