Advertisements
Advertisements
Question
The value of
Options
1
− 1
2
−2
Solution
We have to find: \[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\]
so
\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\]
= `(sin θ cosec θ tan θ) /(sec θ cos θ tan θ )+cot θ / cot θ `
=` (1 xx tan θ) /(1xx tan θ )+cot θ /cot θ `
=`1+1`
=`2`
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Evaluate `(sin 18^@)/(cos 72^@)`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Solve.
`cos55/sin35+cot35/tan55`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Write the maximum and minimum values of sin θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
What is the maximum value of \[\frac{1}{\sec \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If cot( 90 – A ) = 1, then ∠A = ?
Sin 2B = 2 sin B is true when B is equal to ______.