Advertisements
Advertisements
प्रश्न
The value of
पर्याय
1
− 1
2
−2
उत्तर
We have to find: \[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\]
so
\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\]
= `(sin θ cosec θ tan θ) /(sec θ cos θ tan θ )+cot θ / cot θ `
=` (1 xx tan θ) /(1xx tan θ )+cot θ /cot θ `
=`1+1`
=`2`
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
Evaluate `(sin 18^@)/(cos 72^@)`
Solve.
`cos22/sin68`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find cosine of 65° 41’
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If cot( 90 – A ) = 1, then ∠A = ?
If x and y are complementary angles, then ______.